601 research outputs found

    Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates

    Full text link
    There is a pressing need for robust and straightforward methods to create potentials for trapping Bose-Einstein condensates which are simultaneously dynamic, fully arbitrary, and sufficiently stable to not heat the ultracold gas. We show here how to accomplish these goals, using a rapidly-moving laser beam that "paints" a time-averaged optical dipole potential in which we create BECs in a variety of geometries, including toroids, ring lattices, and square lattices. Matter wave interference patterns confirm that the trapped gas is a condensate. As a simple illustration of dynamics, we show that the technique can transform a toroidal condensate into a ring lattice and back into a toroid. The technique is general and should work with any sufficiently polarizable low-energy particles.Comment: Minor text changes and three references added. This is the final version published in New Journal of Physic

    Possible Indication of Narrow Baryonic Resonances Produced in the 1720-1790 MeV Mass Region

    Full text link
    Signals of two narrow structures at M=1747 MeV and 1772 MeV were observed in the invariant masses M_{pX} and M_{\pi^{+}X} of the pp->ppX and pp->p\pi^{+}X reactions respectively. Many tests were made to see if these structures could have been produced by experimental artefacts. Their small widths and the stability of the extracted masses lead us to conclude that these structures are genuine and may correspond to new exotic baryons. Several attempts to identify them, including the possible "missing baryons" approach, are discussed.Comment: 17 pages including 8 figures and 3 tables. ReVte

    Responsivity mapping techniques for the non-positional CCD: the swept charge device CCD236

    Get PDF
    The e2v CCD236 is a swept charge device (SCD) designed as a soft X-ray detector for spectroscopy in the range 0.8 keV to 10 keV [1]. It benefits from improvements in design over the previous generation of SCD (the e2v CCD54) [2] to allow for increased detector area, a reduction in split X-ray events and improvements to radiation hardness [3]. To enable the suppression of surface dark current the device is clocked continuously, therefore there is no positional information making responsivity variations difficult to measure. This paper describes investigated techniques to achieve a responsivity map across the device using masking and XRF, and spot illumination from an organic light-emitting diode (OLED). The results of this technique should allow a deeper understanding of the device sensitivity and allow better data interpretation in SCD applications

    Law, Liberty and the Rule of Law (in a Constitutional Democracy)

    Get PDF
    In the hunt for a better--and more substantial--awareness of the “law,” The author intends to analyze the different notions related to the “rule of law” and to criticize the conceptions that equate it either to the sum of “law” and “rule” or to the formal assertion that “law rules,” regardless of its relationship to certain principles, including both “negative” and “positive” liberties. Instead, he pretends to scrutinize the principles of the “rule of law,” in general, and in a “constitutional democracy,” in particular, to conclude that the tendency to reduce the “democratic principle” to the “majority rule” (or “majority principle”), i.e. to whatever pleases the majority, as part of the “positive liberty,” is contrary both to the “negative liberty” and to the “rule of law” itself

    Measurement of the electric dipole moments for transitions to rubidium Rydberg states via Autler-Townes splitting

    Full text link
    We present the direct measurements of electric-dipole moments for 5P3/2nD5/25P_{3/2}\to nD_{5/2} transitions with 20<n<4820<n<48 for Rubidium atoms. The measurements were performed in an ultracold sample via observation of the Autler-Townes splitting in a three-level ladder scheme, commonly used for 2-photon excitation of Rydberg states. To the best of our knowledge, this is the first systematic measurement of the electric dipole moments for transitions from low excited states of rubidium to Rydberg states. Due to its simplicity and versatility, this method can be easily extended to other transitions and other atomic species with little constraints. Good agreement of the experimental results with theory proves the reliability of the measurement method.Comment: 12 pages, 6 figures; figure 6 replaced with correct versio

    Cooperative damping mechanism of the resonance in the nuclear photoabsorption

    Get PDF
    We propose a resonance damping mechanism to explain the disappearance of the peaks around the position of the resonances higher than the Δ\Delta resonance in the nuclear photoabsorption. This phenomenon is understood by taking into account the cooperative effect of the collision broadening of Δ\Delta and NN^{*}, the pion distortion and the interference in the two-pion photoproduction processes in the nuclear medium.Comment: 11 pages, uses revtex.sty. To appear in Phys. Rev. Let

    Nuclear Photoabsorption at Photon Energies between 300 and 850 Mev

    Full text link
    We construct the formula for the photonuclear total absorption cross section using the projection method and the unitarity relation. Our treatment is very effective when interference effects in the absorption processes on a nucleon are strong. The disappearance of the peak around the position of the D13D_{13} resonance in the nuclear photoabsorption can be explained with the cooperative effect of the interference in two-pion production processes,the Fermi motion, the collision broadenings of Δ\Delta and NN^*, and the pion distortion in the nuclear medium. The change of the interference effect by the medium plays an important role.Comment: 22pages,7figures,revtex
    corecore